

Large-scale CFD Applications (Weather Prediction) on TSUBAME 2

Takayuki Aoki

Global Scientific Information and Computing Center Tokyo Institute of Technology

Supercomputer in the world

2010 November

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT YH Cluster, X5670 2.93Ghz 6C, NVIDIA GPU, FT- 1000 8C / 2010 NUDT	186368	2566.00	4701.00	4040.00
2	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz / 2009 Cray Inc.	224162	1759.00	2331.00	6950.60
3	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU / 2010 Dawning	120640	1271.00	2984.30	2580.00
4	GSIC Center, Tokyo Institute of Technology Japan	TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows / 2010 NEC/HP	73278	1192.00	2287.63	1398.61
5	DOE/SC/LBNL/NERSC United States	Hopper - Cray XE6 12- core 2.1 GHz / 2010 Cray Inc.	153408	1054.00	1288.63	2910.00

SUBAME2.0 System Overview (2.4 Pflops/15PB)

GP GPU

GPU Applications of our group

- Higher-order Compressible Flow
- Lattice Boltzmann for Pulmonary Airflow
- FDTD for Electromagnetic wave Propagation
- Large-Eddy Simulation for Turbulence Flow
- Real-time TSUNAMI Simulation
- Dendrite Solidification based on Phase Field Model
- Numerical Weather Prediction
- Two-Phase Flow Simulations

GP GPU

GPU Applications of our group

- Higher-order Compressible Flow
- Lattice Boltzmann for Pulmonary Airflow
- FDTD for Electromagnetic wave Propagation
- Large-Eddy Simulation for Turbulence Flow
- Real-time TSUNAMI Simulation
- Dendrite Solidification based on Phase Field Model
- Numerical Weather Prediction
- Two-Phase Flow Simulations

Meso-scale Analysis for Solidification Process

Phase Field Model

- Non-equilibrium Statistical Physics
- Phase Field Model

- Introduction of index function $\phi = 0$ $\phi = 1$ liquid solid

- diffusive surface
- stabilization of

surface energy

High computational cost of non-linear term

Phase Field Equation

Allen-Cahn Equation

$$\begin{bmatrix} \frac{\partial}{\partial x} \left(\varepsilon^2 \frac{\partial \phi}{\partial x} + \varepsilon \frac{\partial \varepsilon}{\partial \phi_x} |\nabla \phi|^2 \right) + \frac{\partial}{\partial y} \left(\varepsilon^2 \frac{\partial \phi}{\partial y} + \varepsilon \frac{\partial \varepsilon}{\partial \phi_y} |\nabla \phi|^2 \right) + \frac{\partial}{\partial z} \left(\varepsilon^2 \frac{\partial \phi}{\partial z} + \varepsilon \frac{\partial \varepsilon}{\partial \phi_z} |\nabla \phi|^2 \right) \\ + 4W\phi \left(-\phi \left\{ \phi - \frac{1}{2} + \beta + a\chi \right\} \right)$$

$$\beta = -\frac{15L}{2W} \frac{T - T_m}{T_m} \phi \langle \langle -\phi \rangle = \overline{\epsilon} \left(1 - 3\gamma + 4\gamma \frac{\phi_x^4 + \phi_y^4 + \phi_z^4}{|\nabla \phi|^4} \right)$$

Thermal Conduction

 $\left|\frac{\partial T}{\partial t} = k\nabla^2 T + \frac{L}{C} 30\phi^2 \left(-\phi\right) \frac{\partial \phi}{\partial t}\right|$

↑ Introduction of nonisotropic surface energy Phase Field $0 < \phi < 1$ Liquid $\phi = 0$ Solid $\phi = 1$

Second-order Finite Difference Method and 1st-order Euler Time Integration

Numerical Stencil Access

Thread Assignment

64 threads in the x-direction for Coalaesed memory access

Sweep of 1 thread in a block

threadDimx = 64threadDim.y = 4threadDimz = 1

Marching in the z-directional direction

Recycle of Shared Memory

Dependence on Parameters

 $\gamma = 0.015, A=0.01$

 $\gamma = 0.1$, A=0.01

 $\gamma = 0.075, A=0.01$

γ = 0.075, A=0.01

γ = 0.015, A=0.01, Δ t=half

γ = 0.075, A=0.005

Dendrite Solidification for Pure Metal

Multi-GPU Peformance w/o overlapping

Multi-GPU : Domain decomposition GP GPU 2D decomposition Node 2 Node 1 **GPU PCI** Express →CPU (cudaMemcpy) (3) CPU→GPl (2) $CPU \rightarrow CPU$ (intel) **CPU** Core"2 Quar (intel) Core"2 Oual **MPI**

Overlapping between Computation and Communication

Multi-GPU Peformance w/o overlapping

Breakdown of Overlapping Case

- Computational time becomes short for more GPU numbers
- Communication time is almost same
- The communication time can not be hidden for more than 32 GPUs

Next Generation

Weather Prediction

Collaboration: Japan Meteorological Agency

Meso-scale Atmosphere Model:

Cloud Resolving Non-hydrostatic model

Compressible equation taking consideration of sound waves.

Atmosphere Model

Dynamical Process:

Full 3-D Navior-Stokes Equation

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla P - 2\Omega \times \boldsymbol{u} - \Omega \times (\Omega \times \boldsymbol{r}) + \boldsymbol{g} + \boldsymbol{F}$$

Physical Process:

Cloud Physics, Moist, Solar Radiation, Condensation, Latent heat release, Chemical Process, Boundary Layer

So called "Parameterization" including many empirical rules.

WRF GPU Computing

WRF (Weather Research and Forecast)

Community Code developed by NCAR, NCEP, OU, NOAA/FSL, AFWA

WSM5 (WRF Single Moment 5-tracer) Microphysics*

Represents condensation, precipitation and thermodynamic effects of latent heat release

1 % of lines of code, 25 % of elapsed time

 \Rightarrow 20 x boost in microphysics (1.2 - 1.3 x overall improvement)

WRF-Chem**

provides the capability to simulate chemistry and aerosols from cloud scales to regional

 \Rightarrow x 8.5 increase

Full GPU Implementation

ASUCA Production Code

- A next-generation high resolution weather simulation code that is being developed by Japan Meteorological Agency (JMA)
- ASUCA succeeds the JMA-NHM as an operational nonhydrostatic regional model at JMA

Similar Structure as WRF

- ✓ HEVI (Horizontally explicit Vertical implicit) scheme
- ✓ Dynamical Core uses a numerical scheme with 3rd-order accuracy in time and space
 Flux-form non-hydrostatic compressible equation

Generalized coordinate

Rewrite from Scratch

Implementation : Advection

Thread

Block

- Each thread specifies a (x, z) point、marching in y
 - Improve data transfer performance using domain decomposition

ny nx nz Marching direction

64 x 4 threads (2D) in a block

Using Shared Memory

Capacity 16 kByte/Block 2 GByte (Total) Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of

Using Registers in marching direction

Implementation : 1D Helmholtz equation

Block

64 x 4 threads (2D) in a block

- 1D Helmholtz equation
 - Element in k depends on elements in k+/- 1
 - \Rightarrow marching in z direction

nz

Two-Phase Flows

- Navier-Stokes solver : Fractional Step
 - Time integration : 3rd TVD Runge-Kutta
- Advection term : 5th WENO
- Diffusion term : 4th FD
- Poisson : AMG-BiCGstab
- Surface tension : CSF model
- Surface capture : CLSVOF(THINC + Level-Set)

Continuum eq.

SPH

Mesh Method

different from

High accuracy

Momentum eq.

Level-Set advection

VOF continuum eq.

Level-Set re-initialization

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u} + \frac{1}{\rho} \mathbf{F}$$

$$\frac{\partial \phi}{\partial t} + (\mathbf{u} \cdot \nabla) \phi = 0$$

Staggered variations

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\mathbf{u}\psi) = 0$$

 $\frac{\partial \phi}{\partial \tau} = sgn(\phi) \left(1 - |\nabla \phi|\right)$

able position

u: velocity on x-direction v : velocity on y-direction w : velocity on z-direction $p, \phi, \psi p$: scalar variables

3D Advection Equation

Advection equation

Discretization:

Space : 5th-WENO Time : 3rd TVD Runge-Kutta

312 GFlops (1GPU:GTX285)

Level-Set method (LSM)

The Level-Set methods (LSM) use the signed distance function to capture the interface. The interface is represented by the zero-level set (zero-contour).

ϕ : Level-Set function(distance function)

H : Heaviside function

$$\begin{cases} H(\phi) = \frac{1}{2} & \phi > \varepsilon \\ H(\phi) = \frac{1}{2} \left(\frac{\phi}{\varepsilon} + \frac{1}{\pi} \sin\left(\frac{\pi\phi}{\varepsilon}\right) \right) & |\phi| \le \varepsilon \\ H(\phi) = -\frac{1}{2} & \phi < -\varepsilon \end{cases}$$

Re-initialization for Level-Set function

$$\frac{\partial \phi}{\partial \tau} = sgn(\phi) \left(1 - |\nabla \phi|\right)$$

Advantage : Curvature calculation, Interface boundary Drawback : Volume conservation

Continuous Surface Force (CSF) model by Brackbill, Kothe and Zemach (1991)

The interfacial surface force is transformed to a volume force in the region near the interface via a delta function

Surface tension $\mathbf{F}_S = c$ force $\kappa = -
abla \cdot \mathbf{r}$

$$\mathbf{F}_{S} = \sigma \kappa \mathbf{n} \quad \text{Normal vector}$$

$$\kappa = -\nabla \cdot \mathbf{n} = -\nabla \cdot \frac{\nabla \phi}{|\nabla \phi|}$$

$$\mathbf{F}_{S} = \sigma \kappa \delta(\phi) \nabla \phi$$

Curvature

Surface tension represented by volume force

 $\delta(\phi)$

0

Approximate delta function

$$\delta(\phi) = \frac{\partial H(\phi)}{\partial \phi} = \frac{1}{2} \left(\frac{1}{\varepsilon} + \frac{1}{\varepsilon} \cos\left(\frac{\pi\phi}{\varepsilon}\right) \right)$$
$$\int_{-\varepsilon}^{\varepsilon} \delta(\phi) \ d\phi = 1$$

Anti-diffusive Interface Capture

GP GPU

THINC (tangent of hyperbola for interface capturing) Scheme

[Xiao, etal, Int. J. Numer. Meth. Fluid. 48(2005)1023]

Interface

- · VOF(volume of fluid) type interface capturing method
- Flux from tangent of hyperbola function
- Semi-Lagrangian time integration

$$F_{i}(x) = \frac{1}{2} \left(1 + \alpha \tanh\left(\beta \left(\frac{x - x_{i-1/2}}{\Delta x} - \tilde{x}_{i}\right)\right)\right) \qquad \stackrel{1}{\underset{i=1}{\overset{x}{\longrightarrow}}}$$
$$\alpha = \begin{cases} 1 \quad (\text{if} \quad n_{x} > 0) \\ -1 \quad (\text{if} \quad n_{x} \le 0) \end{cases} \qquad \stackrel{\mathbf{b}}{\underset{i=1}{\overset{udt}{\longrightarrow}}}$$

1D implementation can be applied to 2D & 3D \rightarrow Simple

$$Fl_{x,i+1/2} = -\int_{x_{i+1/2}}^{x_{i+1/2}-u_{i+1/2}\Delta t} F_{up}(x) \, dx \qquad up = \begin{cases} i & \text{(if } u_{i+1/2} > 0) \\ i+1 & \text{(if } u_{i+1/2} \le 0) \end{cases}$$

- Finite Volume like usage
 - * THINC is the method how to compute flux
 - \rightarrow 3 krenel (x, y, z) can be fused to 1 kernel. Merit in memory R/W

a tu

Sparse Matrix Solver

 $\mathbf{A} \mathbf{x} = \mathbf{b} \quad for \quad \nabla \cdot \left(\frac{1}{\rho} \nabla p\right) = \frac{\nabla \cdot \mathbf{u}}{\Delta t}$

Krylov sub-space methods: CG, BiCGStab, GMRes, , ,

Pre-conditioner: Incomplete Cholesky, ILU, MG, AMG, Block Diagonal Jacobi

Non-zero Packing: CRS \rightarrow ELL, JDL

BiCGStab + AMG

Collaboration with
Mizuho Information & Research Institute
for
$$k = 0$$
; $k < N$; $k++$;
 $\alpha_k = \frac{\langle 0, r_k \rangle}{\langle 0, M^{-1}Ap_k \rangle}$ $q_k = r_k - \alpha_k M^{-1}Ap_k$ $\omega_k = \frac{\langle k, M^{-1}Aq_k \rangle}{\langle M^{-1}Aq_k, M^{-1}Aq_k \rangle}$
 $x_{k+1} = x_k + \alpha_k p_k + \omega_k q_k$
 $r_{k+1} = q_k - \omega_k M^{-1}Aq_k$
if $\langle k_{k+1}, r_{k+1} \rangle \in \varepsilon^2 \langle 0, b \rangle$ exit;
 $\beta_k = \frac{\langle 0, r_{k+1} \rangle}{\omega_k \langle 0, M^{-1}Ap_k \rangle}$
 $p_{k+1} = r_{k+1} + \beta_k \langle 0, -\omega_k M^{-1}Ap_k \rangle$
loop end

AMG V-Cycle

Multi-Dimensional Domain Decomposition

- 3D domain decomposition
- 1 GPU is assigned to each domain

- Communication buffer for each face
- Host buffer & Device buffer

Milk Crown

Drop on dry floor

Multi-GPU Performance on TSUBAME 1.2

Multi-GPU Summary

Some CFD applications show good strong scalability up to 32 GPUs in the case of TSUBAME.

The balance between computation and communication performance becomes bad because of the high GPU performance.

In order to achieve high performance for multi-GPU application, the overlapping technique between computation and communication is very important.

Be careful for GPU-to-CPU data transfer (cudaMemcpy) and CPU-to-CPU data transfer (MPI library).

Thank you for your kind attention

TSUBAME 1.2 node detail SunFire X4600

Re-ordering the communication and computation

Overlapping comm and comp in each function

Overlapping communication with computation

Implementation : Advection

Block

Thread

- Each thread specifies a (x, z) point、 marching in y
 - Improve data transfer performance using domain decomposition

ny nx nz Marching direction

64 x 4 threads (2D) in a block

Using Shared Memory

2 GByte (Total)

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of

16 kByte/Block

Capacity

Using Registers in marching direction

Implementation : 1D Helmholtz equation

Block

64 x 4 threads (2D) in a block

- 1D Helmholtz equation
 - Element in k depends on elements in k+/- 1
 - \Rightarrow marching in z direction

nz

Single GPU Performance

Multi-GPU Peformance w/o overlapping

Multi-GPU Peformance w/o overlapping

Thread Assignment

